Invariant feature maps for analysis of orientations in image data
نویسندگان
چکیده
We present a method that uses competitive learning and a neighbourhood function in a similar way to the self-organising map (SOM) [3]. The network consists of a number of modules that are positioned in an array (normally in one or two dimensions) where each module performs a subspace projection and the rotation of these subspaces is weighted by the neighbourhood function. Non-linear activation functions are introduced so that each node performs nonlinear PCA on the training data captured in its Voronoi region. We show that this network may be used for position invariant detection of bars at varying orientations.
منابع مشابه
DPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملDirectional Stroke Width Transform to Separate Text and Graphics in City Maps
One of the complex documents in the real world is city maps. In these kinds of maps, text labels overlap by graphics with having a variety of fonts and styles in different orientations. Usually, text and graphic colour is not predefined due to various map publishers. In most city maps, text and graphic lines form a single connected component. Moreover, the common regions of text and graphic lin...
متن کاملScale and Orientation Invariant Object Recognition using Self-Organizing Maps
This paper proposes a new invariant feature-space system based in the log-polar image representation and SelfOrganizing Maps (SOMs). The image representation used, which is inspired by the structure of the human retina, allows data reduction and helps recognize image contents at different scales and orientations. Each object class is represented by a single prototype image, thus allowing classe...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کامل